什么是Python并行编程,并行计算的内存架构详解 - 汇站网

什么是Python并行编程,并行计算的内存架构详解

2023-10-16 0 578

正文:

如今,计算机系统由多种不同核心和处理单元组成,每个单元都拥有多个处理核心。因此,充分利用计算资源变得至关重要,例如并行计算的程序、技术和工具等。

什么是Python并行编程,并行计算的内存架构详解

并行编程介绍

并行编程是一种编程方式,其中多个线程(或进程)同时执行不同的任务。这可以帮助提高程序的性能和吞吐量,因为它可以利用多核处理器和多核计算机的优势。

并行编程的优点:

提高性能和吞吐量
利用多核优势
更好地管理资源
利用分布式进行计算

并行编程的缺点:

会增加程序的复杂性
需要解决同步和死锁问题
增加了额外的调试成本
需要解决资源竞争问题
并行计算的内存架构

并行计算的内存架构主要分为两种:

共享内存架构:多个处理器共享同一块内存,可以直接访问和修改共享内存中的数据,这样可以减少数据传输的时间和提高程序的效率。
分布式内存架构:每个处理器有自己的独立内存,需要通过网络进行数据传输,这样可以更好地利用分布式系统的优势,但需要处理网络通信的开销。
此外根据指令的同时执行和数据的同时执行,计算机系统可以分成以下四类:

单处理器,单数据 (SISD)
单处理器,多数据 (SIMD)
多处理器,单数据 (MISD)
多处理器,多数据 (MIMD)

SISD

SISD (Single Instruction, Single Data) 是一种计算机体系结构,指的是一个处理器执行一条指令,对应一个数据进行操作的模式。

传统的单处理器计算机都是经典的 SISD 系统,运行在这些计算机上的算法是顺序执行的(连续的),不存在任何并行。

SIMD

MISD(Multiple Instruction stream Single Data stream )是并行计算机的一种结构。MISD 具有 N 个处理单元,按 N 条不同指令的要求对同一数据流及其中间结果进行不同的处理。一个处理单元的输出又作为另一个处理单元的输入。

MISD 实际上是指令层面的并行,多个指令在相同的数据上操作。能够合理利用这种架构的问题模型比较特殊,例如数据加密等。MISD 在现实中并没有很多用武之地,更多的是作为一个抽象模型的存在。

SIMD

SIMD(Single Instruction, Multiple Data)采用一个控制器来控制多个处理器,同时对一组资料中的每一个分别执行相同的操作从而实现空间上的并列性的技术。

SIMD 包括多个独立的处理器,每一个都有自己的局部内存,可以用来存储数据,所有的处理器都在单一指令流下工作。所有的处理器同时处理每一步,在不同的数据上执行相同的指令。SIMD 架构比 MISD 架构要实用的多,很多问题都可以用 SIMD 计算机的架构来解决。

MIMD

MIMD(Multiple Instruction Stream Multiple Data Stream)具有多个异步和独立工作的处理器。在任何时钟周期内,不同的处理器可以在不同的数据片段上执行不同的指令。

MIMD 比 SIMD 的计算能力更强。每一个处理器都在独立的控制单元分配的指令流下工作;因此,处理器可以在不同的数据上运行不同的程序,这样可以解决完全不同的子问题甚至是单一的大问题。

并行编程内存管理

无论处理单元多快,如果内存提供指令和数据的速度跟不上,系统性能也不会得到提升。

共享内存系统,共享内存系统有大量的虚拟内存空间,而且各个处理器对内存中的数据和指令拥有平等的访问权限。
分布式内存模型,在这种内存模型中,每个处理器都有自己专属的内存,其他处理器都不能访问。

并行编程模型

并行编程模型表示软件执行并行计算时必须实现的方式:为了访问内存和分解任务,每一个模型都以它独自的方式和其他处理器共享信息。

共享内存模型

所有任务都共享一个内存空间,对共享资源的读写是 异步的。系统提供一些机制,如锁和信号量,来让程序员控制共享内存的访问权限。

多线程模型

单个处理器可以有多个执行流程,多个线程会对共享内存进行操作,所以进行线程间的同步控制是很重要的。

消息传递模型

消息传递模型通常在分布式内存系统中应用。更多的任务可以驻留在一台或多台物理机器上。

数据并行模型

数据并行模型有多个任务需要操作同一个数据结构,但每一个任务操作的是数据的不同部分。在分布式内存架构中则会将数据分割并且保存到每个任务的局部内存中。

Python中线程与进程

Python 既支持多进程,又支持多线程。线程是最小的执行单元,而进程由至少一个线程组成。如何调度进程和线程,完全由操作系统决定,程序自己不能决定什么时候执行,执行多长时间。

耗时分析 CPU 密集 IO 密集 网络密集
线性运算 94 22 7
多线程 101 24 1
多进程 53 12 1
多线程在 IO 密集型的操作下没有很大的优势,在 CPU 密集型的操作下明显地比单线程线性执行性能更差,但是对于网络请求这种忙等阻塞线程的操作,多线程的优势显著。

多进程无论是在 CPU 密集型还是 IO 密集型以及网络请求密集型中,都能体现出性能的优势。不过在类似网络请求密集型的操作上,与多线程相差无几,但却更占用 CPU 等资源。

如果多线程的进程是 CPU 密集型的,多线程并不能有多少效率上的提升,相反还可能会因为线程的频繁切换,导致效率下降,推荐使用多进程。如果是 IO 密集型,多线程进程可以利用 IO 阻塞等待时的空闲时间执行其他线程,提升效率。

Python 并行编程库

Ray
https://ray.io

Ray 支持许多分布式机器学习库,但并不仅限于机器学习任务,任何 Python 任务都可以使用 Ray 分解并跨系统分布。

Dask
https://www.dask.org/

Dask 使用集中式调度程序来处理集群的所有任务,会自动将它们的执行分散到您的集群中。

Dispy
https://dispy.org/

dispy 支持在集群、网格或云中的许多机器之间跨单个机器中的多个处理器并行执行计算。dispy 非常适合数据并行的场景。

ipyparallel
https://github.com/ipython/ipyparallel

ipyparallel 专门用于跨集群并行执行 Jupyter notebook 代码,它将任何函数应用于一个序列,并在可用节点之间平均分配工作。

Joblib
https://github.com/joblib/joblib

Joblib 是一组在 Python 中提供轻量级流水线的工具,通过使用 numpy.memmap,可以在同一系统上的进程之间在内存中共享数据区域。

转载请注明:汇站网 » 什么是 Python 并行编程,并行计算的内存架构详解

收藏 (0)

微信扫一扫

支付宝扫一扫

点赞 (0)

免责 声明

本资源仅用于个人 学习和研究使用,禁止用于任何商业环境!

 1.  本网站名称:汇站网
 2.  本站永久网址:https://www.huizhanii.com/
 3.  本站所有资源来源于网友投稿和高价 购买,所有资源仅对编程人员及源代码爱好者开放下载做参考和研究及学习,本站不提供任何技术服务 !
 4.  本站所有资源的展示图片和信息不代表本站的立场 !本站只是储蓄平台及搬运
 5.  下载者禁止在服务器和虚拟机下进行搭建运营,本站 所有资源不支持联网运行!只允许调试,参考和研究!!!!
 6.  未经原版权作者许可,禁止用于任何 商业环境,任何人不得擅作它用,下载者不得用于违反国家法律,否则发生的一切法律后果自行承担!
 7.  为尊重作者版权,请在下载24小时 内删除!请购买原版授权作品,支持你喜欢的作者,谢谢!
 8.  若资源侵犯了您的合法权益, 请持 您的版权证书和相关原作品信息来信通知我们请来信     通知我们 我们会及时删除,给您带来的不便,我们深表歉意!
 9.  如下载链接失效、广告或者压缩包 问题请联系站长处理!
 10.  如果你也有好源码或者教程,可以 发布到网站,分享有金币奖励和额外收入!
 11.  本站资源售价只是赞助,收取费用 仅维持本站的日常运营所需!
 12.  因源码具有可复制性,一经赞助 ,不得以任何形式退款。
 13.  更多详情请点击查看

汇站网 Python 什么是Python并行编程,并行计算的内存架构详解 https://www.huizhanii.com/33444.html

汇站

站长资源下载中心-找源码上汇站

常见问题
  • 如果付款后没有弹出下载页面,多刷新几下,有问题联系客服!
查看详情
  • 本站所有资源版权均属于原作者所有,这里所提供资源均只能用于参考学习用,请勿直接商用。若由于商用引起版权纠纷,一切责任均由使用者承担。
查看详情

相关文章

发表评论
暂无评论
  随机评论   表情   下载本站到电脑桌面


表情 表情 表情 表情 表情 表情 表情 表情 表情 表情 表情 表情 表情 表情 表情 表情 表情 表情 表情 表情 表情 表情 表情 表情 表情 表情 表情 表情 表情 表情
登录后评论
联系官方客服

为您解决烦忧 - 24小时在线 专业服务

(汇站网)一个专注站长资源的平台网站,提供最新的网站模板和整站源码,内容包含各类精品网页模板,企业网站模板,网站模板,DIV+CSS模板,织梦模板,帝国cms模板,discuz模板,wordpress模板,个人博客论坛模板,上千种免费网页模板下载尽在汇站网.找源码上汇站.huizhanii.com